skip to main content


Search for: All records

Creators/Authors contains: "Janowiecki, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We have discovered the stellar counterpart to the ALFALFA Virgo 7 cloud complex, which has been thought to be optically dark and nearly star-free since its discovery in 2007. This ∼190 kpc long chain of enormous atomic gas clouds (MHi∼ 109M) is embedded in the hot intracluster medium of the Virgo galaxy cluster but is isolated from any galaxy. Its faint, blue stellar counterpart, BC6, was identified in a visual search of archival optical and UV imaging. Follow-up observations with the Green Bank Telescope, Hobby–Eberly Telescope, and Hubble Space Telescope demonstrate that this faint counterpart is at the same velocity as the atomic gas, actively forming stars, and metal-rich (12 + (O/H) = 8.58 ± 0.25). We estimate its stellar mass to be onlylog(M*/M)4.4, making it one of the most gas-rich stellar systems known. Aside from its extraordinary gas content, the properties of BC6 are entirely consistent with those of a recently identified class of young, low-mass, isolated, and star-forming clouds in Virgo that appear to have formed via extreme ram pressure stripping events. We expand the existing discussion of the origin of this structure and suggest NGC 4522 as a likely candidate; however, the current evidence is not fully consistent with any of our proposed progenitor galaxies. We anticipate that other “dark” gas clouds in Virgo may have similarly faint, star-forming counterparts. We aim to identify these through the help of a citizen science search of the entire cluster.

     
    more » « less
  2. Abstract

    We present results from an optical search for Local Group dwarf galaxy candidates associated with the Ultra-Compact High Velocity Clouds (UCHVCs) discovered by the ALFALFA neutral hydrogen survey. The ALFALFA UCHVCs are isolated, compact Hiclouds with projected sizes, velocities, and estimated Himasses that suggest they may be nearby dwarf galaxies, but that have no clear counterpart in existing optical survey data. We observed 26 UCHVCs with the WIYN 3.5 m telescope and One Degree Imager (ODI) in two broadband filters and searched the images for resolved stars with properties that match those of stars in typical dwarf galaxies at distances <2.5 Mpc. We identify one promising dwarf galaxy candidate at a distance of ∼570 kpc associated with the UCHVC AGC 268071, and five other candidates that may deserve additional follow-up. We carry out a detailed analysis of ODI imaging of a UCHVC that is close in both projected distance and radial velocity to the outer-halo Milky Way globular cluster Pal 3. We also use our improved detection methods to reanalyze images of five UCHVCs that were found to have possible optical counterparts during the first phase of the project, and confirm the detection of a possible stellar counterpart to the UCHVC AGC 249525 at an estimated distance of ∼2 Mpc. We compare the optical and Hiproperties of the dwarf galaxy candidates to the results from recent theoretical simulations that model satellite galaxy populations in group environments, as well as to the observed properties of galaxies in and around the Local Group.

     
    more » « less
  3. Abstract

    We present Hubble Space Telescope imaging of 14 gas-rich, low-surface-brightness galaxies in the field at distances of 25–36 Mpc, with mean effective radii andg-band central surface brightnesses of 1.9 kpc and 24.2 mag arcsec−2. Nine meet the standard criteria to be considered ultra-diffuse galaxies (UDGs). An inspection of point-like sources brighter than the turnover magnitude of the globular cluster luminosity function and within twice the half-light radii of each galaxy reveals that, unlike those in denser environments, gas-rich, field UDGs host very few old globular clusters (GCs). Most of the targets (nine) have zero candidate GCs, with the remainder having one or two candidates each. These findings are broadly consistent with expectations for normal dwarf galaxies of similar stellar mass. This rules out gas-rich, field UDGs as potential progenitors of the GC-rich UDGs that are typically found in galaxy clusters. However, some in galaxy groups may be directly accreted from the field. In line with other recent results, this strongly suggests that there must be at least two distinct formation pathways for UDGs, and that this subpopulation is simply an extreme low surface brightness extension of the underlying dwarf galaxy population. The root cause of their diffuse stellar distributions remains unclear, but the formation mechanism appears to only impact the distribution of stars (and potentially dark matter), without strongly impacting the distribution of neutral gas, the overall stellar mass, or the number of GCs.

     
    more » « less
  4. Abstract

    Phosphorus (P) is a critical element for life on Earth, yet the cosmic production sites of P are relatively uncertain. To understand how P has evolved in the solar neighborhood, we measured abundances for 163 FGK stars over a range of –1.09 < [Fe/H] < 0.47 using observations from the Habitable-zone Planet Finder instrument on the Hobby–Eberly Telescope. Atmospheric parameters were calculated by fitting a combination of astrometry, photometry, and Fe I line equivalent widths. Phosphorus abundances were measured by matching synthetic spectra to a P I feature at 10529.52 Å. Our [P/Fe] ratios show that chemical evolution models generally underpredict P over the observed metallicity range. Additionally, we find that the [P/Fe] differs by ∼0.1 dex between thin disk and thick disk stars that were identified with kinematics. The P abundances were compared withα-elements, iron-peak, odd-Z, and s-process elements, and we found that the evolution of P in the disk most strongly resembles that of theα-elements. We also find that molar P/C and N/C ratios for our sample match the scatter seen from other abundance studies. Finally, we measure a [P/Fe] = 0.09 ± 0.1 ratio in one low-αhalo star and probable Gaia–Sausage–Enceladus member, an abundance ratio ∼0.3–0.5 dex lower than the other Milky Way disk and halo stars at similar metallicities. Overall, we find that P is likely most significantly produced by massive stars in core-collapse supernovae, based on the largest P abundance survey to date.

     
    more » « less
  5. Abstract

    The LIGO HET Response (LIGHETR) project is an enterprise to follow up optical transients (OTs) discovered as gravitational-wave merger sources by the LIGO/Virgo collaboration (LVC). Early spectroscopy has the potential to constrain crucial parameters such as the aspect angle. The LIGHETR collaboration also includes the capacity to model the spectroscopic evolution of mergers to facilitate a real-time direct comparison of models with our data. The principal facility is the Hobby–Eberly Telescope. LIGHETR uses the massively replicated VIRUS array of spectrographs to search for associated OTs and obtain early blue spectra, and in a complementary role, the low-resolution LRS2 spectrograph is used to obtain spectra of viable candidates as well as a densely sampled series of spectra of true counterparts. Once an OT is identified, the anticipated cadence of spectra would match or considerably exceed anything achieved for GW170817 = AT2017gfo for which there were no spectra in the first 12 hr and thereafter only roughly once daily. We describe special HET-specific software written to facilitate the program and attempts to determine the flux limits to undetected sources. We also describe our campaign to follow up OT candidates during the third observational campaign of the LIGO and Virgo Scientific Collaborations. We obtained VIRUS spectroscopy of candidate galaxy hosts for five LVC gravitational-wave events and LRS2 spectra of one candidate for the OT associated with S190901ap. We identified that candidate, ZTF19abvionh = AT2019pip, as a possible Wolf–Rayet star in an otherwise unrecognized nearby dwarf galaxy.

     
    more » « less
  6. Abstract

    We present deep optical imaging and photometry of four objects classified as “Almost-Dark” galaxies in the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey because of their gas-rich nature and extremely faint or missing optical emission in existing catalogs. They have Himasses of 107–109Mand distances of ∼9–100 Mpc. Observations with the WIYN 3.5 m telescope and One Degree Imager reveal faint stellar components with central surface brightnesses of ∼24–25magarcsec2in thegband. We also present the results of Hisynthesis observations with the Westerbork Synthesis Radio Telescope. These Almost-Dark galaxies have been identified as possible tidal dwarf galaxies (TDGs) based on their proximity to one or more massive galaxies. We demonstrate that AGC 229398 and AGC 333576 likely have the low dark matter content and large effective radii representative of TDGs. They are located much farther from their progenitors than previously studied TDGs, suggesting they are older and more evolved. AGC 219369 is likely dark matter dominated, while AGC 123216 has a dark matter content that is unusually high for a TDG, but low for a normal dwarf galaxy. We consider possible mechanisms for the formation of the TDG candidates such as a traditional major merger scenario and gas ejection from a high-velocity flyby. Blind Hisurveys like ALFALFA enable the detection of gas-rich, optically faint TDGs that can be overlooked in other surveys, thereby providing a more complete census of the low-mass galaxy population and an opportunity to study TDGs at a more advanced stage of their life cycle.

     
    more » « less
  7. ABSTRACT

    We present SAMI-H i, a survey of the atomic hydrogen content of 296 galaxies with integral field spectroscopy available from the SAMI Galaxy Survey. The sample spans nearly 4 dex in stellar mass ($M_\star = 10^{7.4}-10^{11.1}~ \rm M_\odot$), redshift z < 0.06, and includes new Arecibo observations of 153 galaxies, for which we release catalogues and H i spectra. We use these data to compare the rotational velocities obtained from optical and radio observations and to show how systematic differences affect the slope and scatter of the stellar-mass and baryonic Tully–Fisher relations. Specifically, we show that $\rm H\alpha$ rotational velocities measured in the inner parts of galaxies (1.3 effective radii in this work) systematically underestimate H i global measurements, with H i/$\rm H\alpha$ velocity ratios that increase at low stellar masses, where rotation curves are typically still rising and $\rm H\alpha$ measurements do not reach their plateau. As a result, the $\rm H\alpha$ stellar mass Tully–Fisher relation is steeper (when M⋆ is the independent variable) and has larger scatter than its H i counterpart. Interestingly, we confirm the presence of a small fraction of low-mass outliers of the $\rm H\alpha$ relation that are not present when H i velocity widths are used and are not explained by ‘aperture effects’. These appear to be highly disturbed systems for which $\rm H\alpha$ widths do not provide a reliable estimate of the rotational velocity. Our analysis reaffirms the importance of taking into account differences in velocity definitions as well as tracers used when interpreting offsets from the Tully–Fisher relation, at both low and high redshifts and when comparing with simulations.

     
    more » « less
  8. Abstract We present results from deep H i and optical imaging of AGC 229101, an unusual H i source detected at v helio =7116 km s −1 in the Arecibo Legacy Fast ALFA (ALFALFA) blind H i survey. Initially classified as a candidate “dark” source because it lacks a clear optical counterpart in Sloan Digital Sky Survey (SDSS) or Digitized Sky Survey 2 (DSS2) imaging, AGC 229101 has 10 9.31±0.05 M ⊙ of H i , but an H i line width of only 43 ± 9 km s −1 . Low-resolution Westerbork Synthesis Radio Telescope (WSRT) imaging and higher-resolution Very Large Array (VLA) B-array imaging show that the source is significantly elongated, stretching over a projected length of ∼80 kpc. The H i imaging resolves the source into two parts of roughly equal mass. WIYN partially populated One Degree Imager (pODI) optical imaging reveals a faint, blue optical counterpart coincident with the northern portion of the H i . The peak surface brightness of the optical source is only μ g ∼ 26.6 mag arcsec −2 , well below the typical cutoff that defines the isophotal edge of a galaxy, and its estimated stellar mass is only 10 7.32±0.33 M ⊙ , yielding an overall neutral gas-to-stellar mass ratio of M / M * = 98 − 52 + 111 . We demonstrate the extreme nature of this object by comparing its properties with those of other H i -rich sources in ALFALFA and the literature. We also explore potential scenarios that might explain the existence of AGC 229101, including a tidal encounter with neighboring objects and a merger of two dark H i clouds. 
    more » « less
  9. Abstract

    We have gathered near-infraredzyJ-band high-resolution spectra of nearly 300 field red giant stars with known lithium abundances in order to survey their Heiλ10830 absorption strengths. This transition is an indicator of chromospheric activity and/or mass loss in red giants. The majority of stars in our sample reside in the red clump or red horizontal branch based on theirVJ,MVcolor–magnitude diagram, and GaiaTeffand log(g) values. Most of our target stars are Li-poor in the sense of having normally low Li abundances, defined here as logϵ(Li) < 1.25. Over 90% of these Li-poor stars have weakλ10830 features. However, more than half of the 83 Li-rich stars (logϵ(Li) > 1.25) have strongλ10830 absorptions. These largeλ10830 lines signal excess chromospheric activity in Li-rich stars; there is almost no indication of significant mass loss. The Li-rich giants may also have a higher binary fraction than Li-poor stars, based on their astrometric data. It appears likely that both residence on the horizontal branch and present or past binary interaction play roles in the significant Li–He connection established in this survey.

     
    more » « less
  10. Abstract We present the first publicly released catalog of sources obtained from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). HETDEX is an integral field spectroscopic survey designed to measure the Hubble expansion parameter and angular diameter distance at 1.88 < z < 3.52 by using the spatial distribution of more than a million Ly α -emitting galaxies over a total target area of 540 deg 2 . The catalog comes from contiguous fiber spectra coverage of 25 deg 2 of sky from 2017 January through 2020 June, where object detection is performed through two complementary detection methods: one designed to search for line emission and the other a search for continuum emission. The HETDEX public release catalog is dominated by emission-line galaxies and includes 51,863 Ly α -emitting galaxy (LAE) identifications and 123,891 [O ii ]-emitting galaxies at z < 0.5. Also included in the catalog are 37,916 stars, 5274 low-redshift ( z < 0.5) galaxies without emission lines, and 4976 active galactic nuclei. The catalog provides sky coordinates, redshifts, line identifications, classification information, line fluxes, [O ii ] and Ly α line luminosities where applicable, and spectra for all identified sources processed by the HETDEX detection pipeline. Extensive testing demonstrates that HETDEX redshifts agree to within Δ z < 0.02, 96.1% of the time to those in external spectroscopic catalogs. We measure the photometric counterpart fraction in deep ancillary Hyper Suprime-Cam imaging and find that only 55.5% of the LAE sample has an r -band continuum counterpart down to a limiting magnitude of r ∼ 26.2 mag (AB) indicating that an LAE search of similar sensitivity to HETDEX with photometric preselection would miss nearly half of the HETDEX LAE catalog sample. Data access and details about the catalog can be found online at http://hetdex.org/ . A copy of the catalogs presented in this work (Version 3.2) is available to download at Zenodo doi: 10.5281/zenodo.7448504 . 
    more » « less